
A Web-based Examination in Programming Exercise Providing
Different Problems to Each Student

KITA Toshihiro, MIYAUCHI Hajime and HIYAMA Takashi

Department of Electrical and Computer Engineering, Kumamoto University

t-kita@eecs.kumamoto-u.ac.jp

Abstract
Internet-based education has various kinds of pos-

sibilities, but we have some difficulties in making a
fair online evaluation of how the each student un-
derstands the contents of the online lecture. In this
paper a simple example of Web-based examination
that was actually done in a programming exercise
class is presented. The problems of the exam had
been made by students themselves as the answers to
a previous homework and are randomly given to the
different students.

1. Introduction

Internet-based or IT-based education is supposed
to greatly grow in number and in quality in several
years. We expect many kinds of merits of IT-based
education. It enables us to let learners more eager to
study the subject, to easily share the world-wide in-
structive resources that have been created by other
educational staff in the world, to give students dis-
tance learning at anywhere in the world, and many
other things.

However, we also find difficulties in IT-based ed-
ucation. For example, it is not so easy to make a
fair online evaluation of how well the students have
understood the contents. Of course, it is a good
compromise that we give a traditional style exam
to the students instead of an online exam while we
make a online lecture, but we will naturally wish to
do without offline matters. There are several distur-
bances for realizing fair grading such as mere dupli-
cation of homework answers between the students,
illegally pretending to be other persons to answer
the exam or something like those.

Our Web-based exam presented in the following
sections is a simple example as a solution or tips to

this issue and it was actually done in a programming
exercise class.

2. Objectives of the exercise class

Before we describe the Web-based exam, we like to
explain the objectives of the C programming exer-
cise class in which we did the online exam.

In the class we intend to make the students who
have only used ready-made applications on their
PC’s interested in computer programming rather
than to teach the details of the C language. To let
the students practically learn how to get computers
work according to what they wish to, we give them
exercises of making C language programs of graph-
ical animations or for solving puzzles. That is to
learn how to convert their own ideas into compu-
tational algorithms, which is required for them to
analyze data or to create new approaches in their
future research activities. It also leads to their brief
understanding of the computer mechanisms.

In our Web-based exam presented in this paper,
we told the students to solve puzzles, particularly
the puzzles called “illust-logic”, using their own pro-
grams that they had prepared.

2.1. What is illust-logic puzzle?

Illust-logic is a puzzle game also known as Paint by
Numbers and Pikros which is very popular in Japan.
Illust-logic puzzles are easy to be made but difficult
to be solved. We utilize this feature of the puzzle
in doing our exam.

Figure 1 shows an example of illust-logic puzzle.
When you complete the answer of the puzzle by
marking the squares of the grid, some pattern or

3
6 1 2 1 4

8 7 6 1 2 8 7 4 5 10

4 5

4 4

4 1 3

4 2 2

4 3 1

4 2 2

2 5

1 5

6

7

Figure 1: Example of illust-logic puzzle

figure will appear in the grid area as shown in Figure
2.

The numbers around the grid area indicate the
run-length of the points to be marked in each row
or column. We call the numbers “the guiding num-
bers.” For example, for the 10-by-10 grid as Figure
1, “10” for a column or a row means that the all
the points should be marked, and “4 5” means that
you should make four marked, one unmarked and
five marked points. But for “2 5”, you have several
possible answers such as

• 2 marked, 1 unmarked, 5 marked and 2 un-
marked points

• 2 marked, 2 unmarked, 5 marked and 1 un-
marked points

• 2 marked, 3 unmarked and 5 marked points

• 1 unmarked, 2 marked, 1 unmarked, 5 marked
and 1 unmarked points

and so on. To determine which is the right answer,
you should first mark or unmark some of the points
in the row or the column by considering the guiding
numbers in the different (i.e., orthogonal) direction.
Checking all the rows and columns to and fro re-
peatedly, you will get the final answer, an eighth
note as in Figure 2 for this example.

3
6 1 2 1 4

8 7 6 1 2 8 7 4 5 10

4 5

4 4

4 1 3

4 2 2

4 3 1

4 2 2

2 5

1 5

6

7

Figure 2: The answer of the puzzle

You can find the explanations of how to play
illust-logic puzzle in several Web pages[1] although
almost all the pages are written in Japanese.

Obviously, to make the problems of illust-logic
puzzles is quite easy. You have only to make some
pattern and just to count the number of points join-
ing in each row and column. But to solve the prob-
lems is difficult and time-consuming.

3. Web-based exam

In this section the Web-based exam which was ac-
tually done in a programming exercise class of our
department is presented.

3.1. Outline of the exam

Our Web-based exam is based on a simple idea that
students make their own problems. In advance of
the exam, students are required to submit 3 types
of material as their homework by e-mail; 10-by-10
and 25-by-25 patterns, a C language program which
was used to generate the guiding numbers from the
patterns and the generated guiding numbers. That
is not only for collecting various exam problems,
but also for getting the students familiar with the
basic way to make C language programs since the
program which generates the guiding numbers from
a pattern is relatively simple.

student A

student B

student C

student D

teacher

problem1

problem2

problem3

problem4

Figure 3: Students submit problems.

student A

student B

student C

student D

teacher
problem1

problem2

problem3

problem4

Figure 4: Examination problems are shuffled.

The submitted problems are easy to make as men-
tioned above and they are also difficult to solve, so
they are appropriate for the exam of this style.

At the examination time, the collected problems
are shuffled and randomly given to the students
who are different from those who made the prob-
lems. The collected answers to the exam are also
collected through the network i.e., each student up-
loads the answers to a server machine. The answers
are checked and graded manually.

3.2. Procedure for each student in the on-
line exam

The students take the following procedure in the
online exam.

1. They make an access to the top Web page of
the exam, enter their own usernames and push
GET button to get a file. (Figure 5, List 1)

2. The browser requests to save the file (named
tg.cgi) to the disk because the mime type
is specified as application/octet-stream in the
HTTP header of the CGI script. (Figure 6)
The CGI script itself (located in the server) is
as shown in List 2. When it is saved to the
disk of users’ machines it becomes again a Perl
script like List 3.

Figure 5: Get exam

<HTML><HEAD><TITLE>getting exam. 1</TITLE></HEAD>

<BODY BGCOLOR=cornsilk><center>

Put your username (used for login) into the form

and push GET button.

A dialog to save a file appears.

Push OK button to save tg.cgi .

(Be sure to remember the directory where it was saved.)

Exit the browser, move to the directory where the file was saved and execute

<pre>perl tg.cgi</pre>

<FORM ACTION="./tg.cgi" METHOD="POST">

username

<INPUT TYPE="text" NAME="username" SIZE="10" VALUE="e0123">

<INPUT TYPE="submit" VALUE="GET">

</FORM>

</center></BODY></HTML>

List 1: index.html

3. The downloaded script includes all the exam
files. The students must execute perl tg.cgi
to retrieve the exam problems. There appears
the instruction (Figure 7) on how to make an-
swers and how to submit them. The students
try to solve the problems and to create answer
files.

4. To upload the answers, they are required to
execute the command mka (List 4) that is also
one of the retrieved files. In the execution of
mka, an archive file that includes all the files
involving the answers are made and the stu-
dents get access to the uploading page. The
students need to push Browse button to se-
lect the archive file and to click Upload button.
(Figure 8, List 5)

5. When the upload is completed by the CGI
script shown in List 6, they can see the list of
the files they have uploaded at the confirmation
message like Figure 9.

#!/usr/bin/perl

$examdir= "exam1129"; # directory where the exam will be made

$datadir= "./guidedata"; # server directory where the problems are put

$URI= "http://nowhere/~t-kita/exam1"; # where cgi scripts are put

$max12= 63; # max. number of the 10-by-10 problem files (for ex1 and ex2)

$max3= 37; # max. number of the 25-by-25 problem files (for ex3)

use CGI_Lite;

$cgi = new CGI_Lite();

%formdata = $cgi->parse_form_data();

$username= $formdata{’username’};

$debug= $formdata{’debug’};

unless ($username =~ /e[0-9][0-9][0-9]/){

print "Content-type: text/html", "\n\n";

print "Invalid username!\n";

exit(0);

}

$unum= substr($username,1); # 3-digit number in username

print "Content-type: Application/Octet-Stream", "\n\n";

printf(’$dir= "%s";’."\n",$examdir);

if ($unum ne "0000"){

printf(’if ($ENV{"USER"} ne "%s"){ ’,$username);

printf(’die "Invalid username!".$ENV{"USER"}." != %s"; }’."\n",$username);

}

printf(’mkdir $dir, 0700 or die "cannot create directory.";’."\n");

embed three problems (guiding numbers of illust-logic puzzles).

problem files are put in $datadir.

for ex1 and ex2, the files are named like 0059-e0123g10.txt.

for ex3 the files are named like 0034-e0123g25.txt.

they are distinguishable by the first 4-digit number.

(it must start from 0001 and no discontinuity is allowed.)

srand $unum; # always give the same problems to the same student

$lastselection= -1;

for($i=1; $i<=3; $i++){

$fname= "ex".$i.".guide"; # filename to be used

if ($i==1 or $i==2){

while(1){ # avoid to give the same problem doublly

$selection= &sl($unum,$i);

if ($lastselection != $selection){

$lastselection= $selection;

last;

}

}

$globfile= sprintf("%s/%04d-*g10.txt",$datadir,$selection);

}else{

$globfile= sprintf("%s/%04d-*g25.txt",$datadir,&sl($unum,$i));

}

unless (@tmp= glob($globfile)){

printf(’printf("\nError! Notify the teacher by raising your hand.\n");’);

printf(’printf("data file not found!(%s)\n");’,$globfile);

die;

}

$insertfile= $tmp[0];

if ($debug eq "DEBUG"){ printf("#guidefilename= %s\n",$insertfile); }

printf(’open FH, ">$dir/%s" or die "cannot create files.";’."\n",$fname);

print "print FH <<END;\n";

open GFH, "<$insertfile";

while(<GFH>){ print $_; }

print "END\n";

print "close(FH);\n";

printf (’chmod 0400, "$dir/%s";’."\n",$fname);

}

############################ mka ##

print << ’GEND’;

open FH, ">$dir/mka" or die "cannot create file.";

print FH <<’END’;

#! /usr/bin/perl

GEND

printf(’$arc= "%s-ans.tgz";’."\n",$username);

if ($unum ne "0000"){

printf(’if ($ENV{"USER"} ne "%s"){ ’,$username);

printf(’die "Invalid username!".$ENV{"USER"}." != %s"; }’."\n",$username);

}

print << ’GEND’;

@f= ("ex1.guide","ex2.guide","ex3.guide", "ex1.ans","ex2.ans","ex3.ans");

foreach (@f) {

unless (-r $_){ die "$_ not found.";}

}

@prog= glob("*.c") or die "C-language program file not found.";

@prog= glob("*.c *.h");

$allfiles= join(" ",@f)." ".join(" ",@prog);

(system("gtar cvzf $arc $allfiles")==0) or die "tar error.";

print "\n$allfiles have been tar+gzipped as the file named \n$arc.\n";

open FH, "pwd|";

$ufile= <FH>; chomp $ufile; $ufile.="/".$arc; close(FH);

print "Invoking netscape to jump to the uploading page...\n";

GEND

printf(’system("mozilla %s/uploadform.cgi?username=%s")’."\n",$URI,$username);

print << ’GEND’;

END

close(FH);

chmod 0500, "$dir/mka";

GEND

############################ README #######################################

print << ’GEND’;

open FH, ">$dir/README" or die "unable to create file";

print FH <<END;

******************* READ THIS CAREFULLY **********************

Move into the directory named $dir and solve the problems.

Copy all the programs (C-language files) into $dir, and

do the compilations or execute make command in this directory

to make the executable that solves the problems.

There are 3 data files of the problems to be solved :

ex1.guide

ex2.guide

ex3.guide

Try to reproduce the patterns from these guiding numbers.

The results should be put in the files named as

ex1.ans

ex2.ans

ex3.ans

with or without editors.

It is OK to include all the output.

Put the incomplete pattern if it timed-out.

To submit your answer, execute

mka

and you can upload the answer.

You can read the same instruction in README file.

END

close(FH);

open FH, "<$dir/README";

system("clear");

while(<FH>){ print $_; }

unlink $0;

GEND

exit(0);

randomly select problems for each.

always return the same problems because "srand $unum" is executed above.

sub sl{

local($unum, $i)= @_;

if ($i==1 or $i==2){

return int(rand()*($max12-0.0001))+1;

}else{

return int(rand()*($max3-0.0001))+1;

}

}

List 2: tg.cgi

Figure 6: Save exam to disk

$dir= "exam1129";

if ($ENV{"USER"} ne "e0123"){ die "Invalid username!".$ENV{"USER"}." != e0123"; }

mkdir $dir, 0700 or die "cannot create directory.";

open FH, ">$dir/ex1.guide" or die "cannot create files.";

print FH <<END;

horizontal 10

2

4 2

4 2

4 2

2 7

2 6

7

6

4

4

vertical 10

3

4

2

9

10

10

9

2

5

4

END

close(FH);

chmod 0400, "$dir/ex1.guide";

open FH, ">$dir/ex2.guide" or die "cannot create files.";

print FH <<END;

horizontal 10

2 2 2

1 2 2 1

(cutting out the rest)

List 3: tg.cgi (downloaded)

The uploading function of this system has been
realized thanks to the Perl module CGI_Lite by
Shishir Gundavaram that can be found in CPAN
sites[2].

4. Conclusion

An example of simple Web-based examination has
been presented. As the students are given different
problems from each other they were supposed to
take the exam under a fair circumstance, which is
expected to lead to their higher motivation to learn.

Beside the style of the examination, it is of course
quite important to decide how to present and what
timing to give hints and advice on the improvement

Figure 7: Retrieve exam files

#! /usr/bin/perl

$arc= "e0123-ans.tgz";

if ($ENV{"USER"} ne "e0123"){ die "Invalid username!".$ENV{"USER"}." != e0123"; }

@f= ("ex1.guide","ex2.guide","ex3.guide", "ex1.ans","ex2.ans","ex3.ans");

foreach (@f) {

unless (-r $_){ die "$_ not found.";}

}

@prog= glob("*.c") or die "C-language program file not found.";

@prog= glob("*.c *.h");

$allfiles= join(" ",@f)." ".join(" ",@prog);

(system("gtar cvzf $arc $allfiles")==0) or die "tar error.";

print "\n$allfiles have been tar+gzipped as the file named \n$arc.\n";

open FH, "pwd|";

$ufile= <FH>; chomp $ufile; $ufile.="/".$arc; close(FH);

print "Invoking Web browser to jump to the uploading page...\n";

system("mozilla http://nowhere/~t-kita/exam1/uploadform.cgi?username=e0123")

List 4: mka

Figure 8: Upload answer files

#!/usr/bin/perl

use CGI_Lite;

$cgi = new CGI_Lite();

%formdata = $cgi->parse_form_data();

$username = $formdata{’username’};

print "Content-type: text/html", "\n\n";

print << ’HT_END’;

<HTML><HEAD><TITILE>uploading file</TITLE></HEAD>

<BODY bgcolor=lavender>

<FORM ACTION="./upload.cgi" ENCTYPE="multipart/form-data" METHOD="POST">

file: <INPUT TYPE="file" NAME="File" SIZE="50">

<INPUT TYPE="submit" VALUE="Upload">

</FORM>

HT_END

print << "HT_END";

Hello, $username.

Your answers should be in $username-ans.tgz.

Display the file list by "Browse" button on the right,

,select $username-ans.tgz and push OK button.

Confirming that the right file name appears in the form

upload the file by Upload button.

The message "Your file received." means uploading has been completed.

Be sure to push Upload button at the end.

</BODY></HTML>

HT_END

exit(0);

List 5: uploadform.cgi

of their own programs and algorithms.
The examination actually done for this time is in

synchronous style; All the students took the exam
in a computer room at the same time. The asyn-
chronous style examination is desirable, but it will
be more difficult to be done neatly.

References

[1] http://www.microlink.co.jp/products/
minilogic/lecture.htm

[2] http://www.cpan.org/

#!/usr/bin/perl

most parts are borrowed from a CGI_Lite example file named "upload".

use CGI_Lite;

$cgi = new CGI_Lite;

$indir= "./incoming";

$cgi->set_directory ($indir) || die "Directory doesn’t exist.\n";

$cgi->set_platform ("Unix");

$cgi->set_buffer_size (1024);

$cgi->filter_filename (\&my_way);

$cgi->set_file_type (’handle’);

$cgi->add_mime_type (’application/mac-binhex40’);

$cgi->add_mime_type (’application/binhex-40’);

$cgi->remove_mime_type (’text/html’);

$data = $cgi->parse_form_data;

print "Content-type: text/plain", "\n\n";

if ($data->{’File’} =~ /_$/){

print "filename not specified";

exit(0);

}

if ($cgi->is_error) {

$error_message = $cgi->get_error_message;

print <<End_of_Error;

Error! Raise your hand to notify.

$error_message

End_of_Error

}else{

$File = $data->{File};

print <<End_of_Header;

Your file $File received.

Here are the contents of your uploaded file:

End_of_Header

open PR, "tar tvzf $indir/$File |";

while (<PR>) {

print;

}

$cgi->close_all_files;

}

exit (0);

sub my_way

{

my $file = shift;

$file =~ tr/A-Z/a-z/; # Upper to lowercase

$file =~ s/(?:%20)+/_/g; # One or more spaces to "_"

$file =~ s/%[\da-fA-F]{2}//g; # Remove all %xx

return ($file);

}

List 6: upload.cgi

Figure 9: Confirmation of upload

